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Abstract In this paper we review the asymptotic matching conjectures for r-regular
bipartite graphs, and their connections in estimating the monomer-dimer entropies in
d-dimensional integer lattice and Bethe lattices. We prove new rigorous upper and lower
bounds for the monomer-dimer entropies, which support these conjectures. We describe a
general construction of infinite families of r-regular tori graphs and give algorithms for com-
puting the monomer-dimer entropy of density p, for any p € [0, 1], for these graphs. Finally
we use tori graphs to test the asymptotic matching conjectures for certain infinite r-regular
bipartite graphs.

Keywords Matching and asymptotic growth of average matchings for r-regular bipartite
graphs - Monomer-dimer partitions and entropies

1 Introduction

The monomer-dimer covers of infinite graphs G, and in particular of the infinite graph in-

duced by the lattice Z¢, is one of the widely used models in statistical physics. See for
example [1, 2, 4-6, 11, 14-17, 19-22, 24-26, 28, 30].
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Let G = (V, E) be an undirected graph with vertices V and edges E. G can be a finite
or infinite graph. A dimer is a domino occupying an edge ¢ = (u, v) € E. It can be viewed
as two neighboring atoms occupying the vertices u, v € V and forging a bond between
themselves. A monomer is an atom occupying a vertex w € V, which does not form a bond
with any other vertex in V. A monomer-dimer cover of G is a subset E’ of E such that any
two distinct edges e, f € E’ do not have a common vertex. Thus E’ describes all dimers
in the corresponding monomer-dimer cover of G. All vertices V' C V, which are not on
any edge e € E’, are the monomers of the monomer-dimer cover represented by E’. E’ is
referred to here as a matching. E' is called a perfect matching if V' =0, i.e. all the vertices
of G are covered by the dimers.

Consider first a finite graph G = (V, E). Then E’ is called an [-matching if #£’ = [. Note
that 21 <#V. Let ¢ (I, G) > 0 be the number of /-matchings in G for any / € Z.. (Note that
¢(0,G) =1and ¢ (I, G) =0 if there are no /-matchings in G. Assume also that ¢ (I, G) =0
for a non-integer / > 0.) Then the monomer-dimer entropy of density p of G is defined as

logmax(¢ (L 25%].G). 1)

he(p) = #V

for any p € [0, 1].

Let ¢ (x,G) =Y 2,0, G)x' denote the matching generating polynomial of G. The pres-
sure of G is defined as

log (e, G)
#V '

For an infinite graph G the monomer-dimer entropy of density p and the pressure Pg(t)
are defined by taking appropriate lim sup on the finite sequences of graphs converging to G.
(See for details Sect. 2.)

We now consider the classical case in statistical physics: the lattice Z¢, consisting of
all d-dimensional vectors i = (iy, ..., i;) with integer coordinates. (As usual we denote
by Z,Z.,N the set of integer, the set of nonnegative integers and the set of positive in-
tegers.) Let e, = (61, ..., 8kg) be the unit vector in the direction of the coordinate x; for
k=1,...,d. Then G(Z%) = (V = Z%,E), where (i,j) € E <= j — i = +e; for some
k € [1,d]. Note that G(Z“) is an infinite 2d regular graph. ~

Let hq(p) := hggay(p) forany p € [0, 1]and by := SUP (0,11 hqg(p).(hgand hy :=hy(1)
are called the d-monomer-dimer entropy and the d-dimer entropy respectively [11].) For
d = 1itis known that [11, Sect. 4]:

P (t) :=

hi(p) = (1 - §)log(1 = §> ~Llog L — (1= plogt —p), pelo1l @D

The value of planar dimer entropy 4, (1) was computed in [5] and [21]

o0

1 (=D
ha()= =3 ——_ —0.29156090. ...
2A()=—3 B 17 = 02915609

q=0
The exact values of h,(p) for p € (0, 1) and h,(p) for d > 3, p € (0, 1] are unknown. Ac-
cording to Jerrum [24], the computation of the matching generating polynomials of finite
planar graphs in general is computationally intractable. (This fact does not rule out the pos-
sibility that h,(p) are computationally tractable for d > 2, however for d > 3 it seems that
h3(1) and h3 are hard to compute with high precision.)
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The properties of the entropy h,4(p) for any p € [0, 1] was studied by Hammersley and
his collaborators in [15-17, 19]. It was shown in [11] that /,(p) can be obtained from the
limits of certain tori graphs, which are bipartite and 2d regular. Using the proof of Tverberg’s
permanent conjecture, proved by the first name author [8], the following lower bound was
shown in [11]

1
ha(p) = fha(p) = 5(—p10gp —2(1 = p)log(l — p) + plog2d — p) (1.2)

for any p €0, 1].

Tverberg’s permanent conjecture states that the minimum of the sum of all / x [ perma-
nental minors of n x n doubly stochastic matrices is achieved only at the flat matrix J,, = ( %).
It is a generalization of the van der Waerden permanent conjecture for doubly stochastic ma-
trices, which is the case [ = n. In [32] Schrijver gave a lower bound on the number of perfect
matchings for r-regular bipartite graphs. It is an improvement of the lower bound implied
by the van der Waerden permanent conjecture. Furthermore, this lower bound is asymptot-
ically sharp. Equivalently, one can think that Schrijver’s lower bound gives asymptotically
the number of perfect matchings in large random r-regular bipartite graph.

In [13] we stated a Lower Matching Conjecture, referred here as LMC, for any
[-matchings of r-regular bipartite graph. For 2/ = #V this conjecture is asymptotically
equivalent to Schrijver lower bound for perfect matchings. This lower bound can be viewed
asymptotically as the number of /-matchings in a large random r-regular bipartite graph.
The LMC implies the Lower Asymptotic Matching Conjecture stated in Sect. 2, referred
here as LAMC, yields the following conjecture.

ha(p) > ghai(p), forany p € (0,1]and d > 2, (1.3)

where
1
gh.(p) = §<plogr —plogp —2(1 — p)log(1 — p) + (r — p) log<1 - g)) (1.4)

for any integer r > 2. Note that /,(p) = gha(p). In a recent paper [10] the LAMC was
proven for the sequence of densities p = ==, 5 =0, 1, ..., for any given r > 2. Hence (1.3)
holds for p = %, s=0,1,....Inparticular 2,(1) > gh,,4(1) for any d € N. The inequality
h3(1) > 0.440075 is the best known lower bound. A recent massive computation performed
by the third named author in [26] gives the best known upper bound /3(1) < 0.457547.

The conjectured lower bound (1.3) yields a lower bound for the d-monomer-dimer en-
tropy hg. In particular, the conjectured lower bound (1.3) yields &3 > 0.784992989. The
validity of (1.3) ford =3, p = % = % implies the best lower bound known A3 > h3(%) >
0.7845241927. In this paper we give new lower bounds on 4, (p) which yield the inequality
h3 > h3(0.6814) > 0.7849602275. The numerical computations in [11] yield the best known
upper bound /3 < 0.7862023450.

In [13] we stated an Upper Matching Conjecture, referred here as UMC. Namely, let
K., be a complete bipartite graph on 2r vertices, where the degree of each vertex is r.
Denote by g K., be the graph consisting of g copies of K, ,. Then the UMC claims that any
r-regular bipartite graph G on 2¢r vertices satisfies ¢ (I, G) < ¢, gK,,) forl =0, ..., gr.
We also have a corresponding Upper Asymptotic Matching Conjecture, referred here as
UAMC, which is slightly more technical to state. (See Sect. 6.) For r = 2 we proved these
conjectures in [13].
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The main purpose of this paper is to give theoretical and numerical evidences on the
LAMC and UAMC and their applications to the estimates of the monomer-dimer p-densities
for Z¢ and for the Bethe lattices, i.e. d-regular infinite trees. We believe that the computa-
tional and theoretical setting discussed in this paper are of interest by itself and to researchers
in asymptotic combinatorics, which is widely used in statistical physics.

‘We now outline briefly the main setting of our computations for the verification of the two
asymptotic conjectures. It is well known that the asymptotic growth of many configurations
in statistical physics are given in terms of the spectral radius of the transfer matrix. See for
example [11]. In this paper we construct infinite families G, = (V,,, E,,), n € N of r-regular
bipartite graphs, which are coded by a specific incidence matrix A € {0, 1}**¥. This se-
quence of graphs converges to an infinite r-regular graph G. Using programs based on soft-
ware developed by the third named author one obtains the transfer matrix B(t) € R2" 2"
corresponding to the matching generating polynomial with the value x = e*. Since the in-
finite tori graphs corresponds to a subshifts of finite type, abbreviated here as SOFT, one
can compute the pressure function P(¢) in terms of the spectral radius p(B(¢)). This is
well known to the experts, and we bring the proofs of these formulas in the paper for
completeness, using the general techniques in [12]. (The properties of the pressure func-
tion P(t),t € R, for multi-dimensional SOFT, as for example the monomer-dimer models
in Z%,d > 1, are studied in detail in [12].) Then the monomer-dimer p-density hg(p) is
computed by using p(B(¢)) and its derivative. (In this setting p = p(¢).) We then compare
hg(p(t)) to the upper and lower bound given by the lower and upper asymptotic conjecture.

We now briefly survey the contents of our paper. In Sect. 2 we discuss the monomer-
dimer entropy £g,;(p) of density p and the pressure function Pg,,(¢) for a sequence of fi-
nite graphs {G, = (V,, E,)} of bounded degrees such that #V,, — oo. We define the function
low,(p), p € [0, 1] which gives the sharp inequality /¢, ;(p) > low, (p) for any sequence of
bipartite r-regular graphs and any p € [0, 1]. We state the LAMC, which is equivalent to the
equality low, = gh,. Furthermore if the sequence {G,} is a sequence of random r-regular bi-
partite graphs we conjecture that /g, (p) = gh.(p) almost surely [13]. In Sect. 3 we use the
recent verification of the LAMC for p = r’?, s =0,1,... forany r > 2 to derive tight lower
bounds on for low,. In Sect. 4 we discuss the applications of our results to Bethe lattices, i.e.
infinite dimensional r-regular trees. In Sect. 5 we discuss the sequence of tori graphs, which
are considered in [11] and [12] to compute h,, i3 and h,(p). We prove the thermodynamics
formalisms for such graphs which gives the monomer-dimer entropy of density p in terms
of the pressure. In Sect. 6 we describe a fairly general construction of sequences of regular
graphs, which includes the sequence of tori graphs. In Sect. 7 we describe the upper match-
ing conjecture and its asymptotic version, called the upper asymptotic matching conjecture.
We give upper bounds for 4, (p) for any sequence of bipartite r-regular graphs and show
that in some regions these bounds are relatively close to the UAMC. In Sect. 8 we describe
our computational results, which support the conjectures stated in this paper. In Sect. 9 we
identify an infinite graph with the maximal pressure among other infinite graphs in certain
families of sequences described in Sect. 6.

2 Entropies, Pressure and LAMC

We will now define a limiting monomer-dimer density for a sequnce of bounded degree
graphs.

Definition 2.1 Let {G,}, G, = (V,, E,), n € N be a sequence of finite graphs, where multi
edges are allowed, such that #V,, — oo and the degree of each vertex in G,, is bounded by d
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for n € N. For p € [0, 1] we define h(g,(p), the monomer-dimer entropy of density p, as
follows:

: log ¢ (I, Gn)
h =1 _— 2.1
(G} (p) = limsup v 2.1
over all sequences [, € Z. satisfying
.2,
lim =pel0,1]. 2.2)

n

hig, (1) and hg,) = supPE[O,”h(G”}(p) are called the dimer entropy of {G,}, and the
monomer-dimer entropy of {G,} respectively. For ¢ € R the pressure of {G,} is defined
as

1 2r, Gn
PG, (t) :==limsup %. 2.3)

n— o0 #Vn
Let G = (V, E) be an infinite graph, where multi edges are allowed. Assume that the
maximal degree of vertices in G is d < co. A sequence of graphs {G,}, G, = (V,, E,),
V,.cV,n=1,2,...,V,, where multi edges are allowed, converges to G if the following
conditions hold:

1. Vi C V, C --- are finite subsets of V satisfying the condition V = Usil V,=V.

2. Each G, contains the induced subgraph G (V,) := (V,, E(V,,)) of G on the set of vertices
V.., and the degree of each vertex in G, is at most d.

3. Let v € V, and assume that all neighbors of v in V are in V,,. Then E and E, have the
same set of edges that contain v.

Then h¢(p) :=hic,(p), he :=h,), Pc(t) = P, (1).

The above definition of entropy and pressure of an infinite graph G depends on the spe-
cific choice of the convergent sequence {G,} to the infinite graph G. For G(Z%) one has a
whole class of the sequences {G,}, for which the resulting h(c,;(p), P(c,)(t) is independent
of the choice of the convergent sequence {G,} [12, 15-17, 19]. In this case we denote by
hy(p), P,(t) the corresponding quantities. For other infinite graphs G discussed in this paper
we choose a convenient convergent sequence {G,}, and we do not discuss the corresponding
class of sequences which yield the same entropy and pressure.

The properties of the entropy h,(p) for any p € [0, 1] was studied by Hammersley
and his collaborators in [15-17, 19]. Let us mention two properties that are of interest in
this context. For any m € N let (m) :={1,...,m} = [1,m] N Z be the set of integers be-
tween 1 and m. For any m = (m,...,my) € N¢ let (m) := (m;) x --- x (my) C N is
the set of points in the lattice Z¢ located in the box [1,n1,] x --- x [1, m4] in R?. Denote
by vol(m) := I—[E’:l m; the volume of the box (m). Let G(m) := ((m), £(m)) be the sub-
graph of G(Z?) induced by (m), i.e. (i,j) € E(m) <= i,j e (m) and i — j = +e; for
some k € (d). Let m, := (m; ,...,my,), n € N be a sequence of lattice points in N, such
that m, - co <= my, — oo as n — oo for each k = 1,...,d. Then for any sequence
1, € [0, ™)1 NN the following conditions hold:

log ¢ (I, G(m,))

=h if
n— 00 vol(m,,) a(p) i

ll‘l

m, — oo and lim

A olmy) =pel0,1]. 24
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The above characterization yields that s,(p) is a concave continuous function on [0, 1],
see [15].

Let T (m) := ((m), E(m)) be the torus on (m). Thus two vertices i, j € (m) in 7 (m)
are neighbors if (i, j) € E(m), or for any m; > 2 the vertices (i1, ..., ix—1, L, ikt1s.--,10q)
and (iy, ..., k1, Mg, ig41, - .., Iq) are adjacent forany k € (d) and (iy, ..., ik—1, ikt1s .-, 0a)
e N1, Clearly ¢(I, T(m)) > ¢(l, G(m)) for any I € Z,. It was shown in [11] that the
condition (2.4) can be replaced by the corresponding condition on the torus:

log¢(l,, T (m,))

=h if
n— 00 VOl(mn) d(p) '

21,
m, — oo and lim

dm i) =pel0,1] (2.5)

(Itis assumed that /,, € [0, W] NN.) More general, one can show that iy (p) = hgza)(p).

There are several advantages of considering 7' (m) over G(m). Assume that m; > 2 for
k=1,...,d.First, the graph T (m) is a 2d-regular graph. Second, the automorphism group
of 7' (m) is quite big, which can be very well exploited, using the general method of [26].
See also [27], and [11, 12] for the computations of A4, fzd and h,(p) respectively.

The fact that 7(2m) is 2d-regular bipartite graph was exploited in [11] to show (1.2).
This lower bound is obtained by noting that if G = (V, E) is an r-regular bipartite graph
then ¢ (I, G) > f, (I, #V), where the function f,(/,2n) := (7)21! (%)[ is determined from the
proof of Tverberg’s permanent conjecture [8].

The LMC stated in [13] claims that ¢ (I, G) > g, (I, #V) (> f,(,#V)) for any r-regular

bipartite graph, where
2 rn—l 1
-1 [
2, 2n) = (”) (’" ) (—r) . (2.6)
l nr n

For 21 = #V (2.6) is Schrijver’s lower bound for perfect matchings in r-regular bipartite
graphs on 2n vertices. The LAMC, which yields (1.3), can be stated as follows:

Conjecture 2.2 (The Lower Asymptotic Matching Conjecture) Let G(2n,r) be the set
of r-regular bipartite graphs on 2n vertices, possibly with multi edges. For each | €
[0,n]NZ let w(l,2n,r) :=mingeg@n,n ¢, G). For p € [0, 1] let low, (p) be the infimum
liminf,_, o W over all sequences 0 < I, < ny,k € N such that limy_, o, % =p
Then

low, (p) = gh, (p). 2.7)

The results in [13] show that for a given p € [0, 1] and r > 2, the above conjecture is
equivalent to the statement that the number of /-matching in a random bipartite r-regular
graph will behave asymptotically as in Conjecture 2.2. In particular, the random graphs
minimize, in the asymptotical sense, the number of /-matchings in r-regular bipartite graphs.

It is shown in [13] that the LMC and LAMC hold for r = 2. Furthermore, the cycle C5,
on 2n vertices satisfies the inequality ¢ (I, C»,) < ¢ (I, G) for any G € G(2n, 2). Hence

I log ¢ (I, Capy)
jm —— = Tk

= gha(p) = hi(p)
k—o00 ny

for any sequence 0 <, < ny, k € N satisfying the assumptions of Conjecture 2.2.
In a recent paper [10, Theorem 5.6] the following results were proven:
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Theorem 2.3 The Lower Asymptotic Matching Conjecture holds for the following corre-

sponding sequence of densities p = #, s =0,1,..., for any given r. In particular (1.3)
holds for p = zjiv,s:o, 1,....

This can be extended to give a bound for all p in the following way.

Definition 2.4 For 2 <r € N let ghl,(p), p € [0, 1] be the following function.

o ghl, (%) =gh,(;%;) fors =0,1,....
e ghl.(p) is linear on the interval [ﬁ, ﬁ] fors=0,1,....
e ghl,(0)=0.

The concavity of h,(p) and Theorem 2.3 yields:
ha(p) > ghlyy(p), forall pe[0,1]andd =2,3,.... (2.8)

In the next section we improve substantially these lower bounds.

In [10, Fig. 1] are plotted the graph of gh4(p), the graph corresponding to UAMC and
the 19 values of the h,(p) computed by Baxter [1]. (Baxter’s computations are based on
sophisticated heuristical arguments. His computations were recently verified by rigorous
mathematical methods in [12].) It turns out that Baxter’s values are very close to the values
of gha(p).

In Fig. 1 we show the graphs of ghl,.(p), low, (p), a lower bound for low,(p) given
in the next section, and gh,(p) for r = 4. Note that the differences of the three graphs are
relatively large on the first interval from the right [rfr—l, 1], slightly less on the second interval
from the right [r:L_Z’ #], and ignorable from the fourth interval to the right [ﬁ, 51 We
notice that the differences between the functions ghl,(p), low, (p), gh,(p) decrease as r
increases. (This observation applies also for the values r = 3, 6 which are not plotted here.)

0.2 0.4 0.6 0.8 1

Fig. 1 (Color online) ghly-red, lowy 1-blue, ghy-green
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3 Lower Bounds for low, (p)

In this section we give a lower bound for the function low, (p), which is defined in Conjec-
ture 2.2.

Theorem 3.1 The function low,(p) + %(p log p 4+ (1 — p)log(1 — p)) is concave.
Proof Let G € G(2n,r). Consider the polynomial 6(x) := (—x)”lﬁ(—xl, G). Since

¢(,G)>0 for / =0,...,n it follows that 6(x) has n complex nonzero roots. It is well
known [20] that 6 (x) has only positive roots. The Newton inequalities, see e.g. [29], yield

2
PU-1.6)90+1,G) <(¢(1’G)> , d=1,...,n—1. 3.1

GID G T\

Let Gy, € G(2n, r) be an r-regular graph for which the equality w(/, 2n,r) = ¢ (I, G 2n.,)
holds. Equation (3.1) and the minimal characterizations of w(k,2n,r),r =0, ..., n yields

_1.2 1,2 2 ?
wl = 1,20, wld + 1, n,r)<<u(l’ ”»’”), I=1,...n—1. (32

G Gi) o 7 ()
This is equivalent to the statement that the sequence

9(.G) _
(h =

ajony i=1og 0, [=0,...,n

is a concave sequence. Let a(x,2n,r) be a piecewise linear function on [0, 1] defined as
follows:

e a(t,2nr)=42r1=0,...,n.
° a(é, 2n, r) is linear function on the interval [%, %] forl=0,...,n—1.
The concavity of the sequence a;3,,,/ = 0,...,n is equivalent to the concavity of

a(x,2n,r). Let {n;}32, be an increasing sequence of positive integers. Let [ € [0, ng]
NZ,k € N be a sequence satisfying limy_, fl—’jc = p € [0, 1]. Use Stirling’s formula to de-
duce that

log(7) 1
im =—(plogp+ (1 — p)log(l — p)). (3.3)
k— 00 an 2
It is straightforward to show that
1
liminfa(x,2n,r) =low,(x) + z(p log p + (1 — p)log(l — p)). (3.4
n—oo

Since each «(-, 2n, r) is concave it follows that low, (p) + %(p logp + (1 — p)log(l — p))
is concave. ]

The arguments of the proof of the above Theorem combined with the definition of
ha(p) = hgzay(p), implies a stronger concavity result than given in [15].

Corollary 3.2 Let hy(p), p € [0, 1] be the monomer-dimer entropy of density p for the
graph G(Z4). Then hy(p) + %(p log p + (1 — p)log(1 — p)) is concave.
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Theorems 2.3 and 3.1 yields:

Corollary 3.3 Let low, 1(p), p € [0, 1] be defined as follows.

o low, (5) = gh, () fors=0,1,....

e low, (p) + %(plogp + (1 — p)log(1 — p)) is linear on the interval [ﬁ, ﬁ] for
s=0,1,....

e low,;(0)=0

Then low, (p) > low, | (p) for any p € [0, 1].

Figure 1 shows the position of the graphs ghl, (p) <low,(p) < gh,(p) forr =4.

We now give a different lower bound for low, (p) using [10, Theorem 5.6].
Theorem 3.4 Let low,>(p), p € [0, 1] be defined as follows.

o low, (=) = gh,(ﬁ)fors:O,l,....

r+s
e For p € (=, 1) low, 2(p) the maximum between the two following numbers

r+1’

1 1
§(logr (- l)log<1 = ;)) — 3(plog p+ (1= p)log(1 = p))

and
P 1 (1- pylog(1 — p)+ “log(1— —
—logr — plogp — (1 — p)log(l — —1lo -—— .
> 2 plogp p)log 14 > g r 1
e Forpe (r+Y+l , /+v) low,.2(p) the maximum between the two following numbers
)4 1
5 logr+ 2 (=plogp —2(1 - p)log(l — p))
1 1 1—-p
+-(+s—Dlog[1———) =G —1+p)log[ 1 - —E
2 r+s K
and
P 1
5 logr+ 2 (=plogp —2(1 — p)log(l — p))
e ong(n L) 4 pog(1- 122
[ (r+s)lo - K 0 -
2 & r+s+1 p)iog s+1
fors=1,....

e low,»(0)=0
Then low, (p) > low,»(p) for any p € [0, 1].
Proof [10, Theorem 5.6] states

log ¢ (ly. Gi)

liminf
n—00 Ny

> P

> L logr + 3 (~plog p ~2(1 — p)log(1 ~ p))
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522 S. Friedland et al.

1 ) 1 ) I—p
+—<(r+] —1)10g<1— —) —(Jj —1+p)10g<1— —)) (3.5)
2 r+j J

for any sequence of Gy € G(2ny, r) where limy_, oo :lik = p and any j € N. This implies the
inequality low, (p) > low,»(p) where p € [— "]and s € N. (Choose j =s,s + 1.)

In the interval [r’?, 1] the second inequality follows from the above inequality for j = 1.
For the first inequality we use the arguments of Theorem 3.1. Combine the arithmetic-

geometric inequality and Schrijver’s inequality [32] to deduce

% _ 1yr—1
) = gn Gy =

<¢(l, G)
()
Taking logarithm of both sides, dividing by 2n and using any sequence satisfying (2.2)
we deduce the inequality

1 1
low,(p) > §<10gr +(r— 1)10g(1 - ;)) - E(p logp+(1—p)log(l —p)) (3.6)
for all p € [0, 1]. O

It turns out that for many of the values of p, the lower bound low,>(p) a better lower
bound than low, ;(p), and it is very close to the function gh,(p). Figure 2 compares the
differences low, ;(p) — gh,(p), plotted in black, and low,,(p) — gh,(p), plotted in blue,
for r = 4.

From this graph and the graphs for » = 3, 6, which are not plotted here, we conclude
that the errors gh,(p) — ghl.(p), gh,(p) — low, 1(p), gh.(p) — low,»(p) are decreasing
monotonically with r.

Since lowg »(0.6814) = 0.7849602275 we deduce the inequality

h3 > h3(0.6814) > lows(0.6814) > lows 2(0.6814) = 0.7849602275

given in Sect. 1. Combine Corollary 3.3 with Theorem 3.4 to deduce

-0.005¢

-0.01¢

-0.015¢

-0.02¢

-0.025¢

-0.03¢

-0.035¢

Fig. 2 (Color online) lowy, 1 —ghy-black, lowy » —ghy4-blue
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Corollary 3.5 For3 <r eNand p €10, 1]

low,(p) = max(low,1(p), low,2(p)).

4 Monomer-Dimer Densities for Bethe Lattices

Let T(r) be an infinite r-regular tree. Recall that T(3) is known the Bethe lattice. Clearly,
each T(r) is bipartite. For each T(r), r > 2 we construct a convergent sequence {G,(r)} in
sense of Definition 2.1.

Fix a vertex O in T(r) and consider all vertices in T(r) whose distance from O isn > 1.
Then the number of such vertices is r(r —1)"~'. Let A, ..., A, be the r vertices of distance
1 from 0. The number of vertices in T(r) whose distance from O is exactly n is divided
to r classes A; ,,i =1,...,r, where the points in .4;, have distance n — 1 from A;. Let
X, = UZ| Ain. Note that #X,, = #A4,,.1 = (r — 1)". Let V, := {O}U""_ Aij U Ay
Let H,(r) = (X, U A, 41, F,,) be an arbitrary r — 1 regular bipartite graph with the two
classes of vertices X,,, A, ,+1. Let G, (r) = (V,, E,) where E, are the union of the edge
set in the induced graph T(r)(V,) and the set F. Note that G, (r) is r-regular and bipartite.
Then G, (r),n =1, ..., converges to T(r).

Note that T(2) is isomorphic to the integer lattice Z, and G,(2) is a cycle of length
2(n + 1) for n € N. Hence

hG(Z)(P) = h{Gn(Z)}(p) = ghz(p) for all pe [0, 1] (41)

In [13] it is shown that low,(p) = gha(p).
Using the definition low, (p) and the fact that G, (r) are r-regular and bipartite we obtain.

Corollary 4.1 Let2 <r € N. Then
hiG, @y (p) =low,(p) forall p €[0,1]. 4.2)
For more complex models, like the Ising model, it is known that this kind of
limit is sensitive to the exact limiting sequence of graphs [18]. It is an interesting
problem if equality holds in the above inequality for some choices of random graphs
H,(ryegRr—-D",r—1),neN.

5 An Example of Sequence of Tori

We first discuss a sequence of graphs that give the lower and upper bounds for 4, and
hq(1) for the graph G (Z¢) considered in [11]. Assume that the dimension d > 1. Let m’ :=

(mi,...,mqg_1) € N be fixed and assume that m; > 3 for i = 1,...,d — 1. Consider
the sequence of d-dimensional tori 7((m’,n)) = (V,, E,),n = 3,4, .... Each torus is a
2d-regular graph. If my, ..., my_; and n are even then T ((m’, n)) is bipartite. The vertex

set of T((m', n)) is the set V, := ((m’, n)). V, can be viewed as composed of n layers of
vertices (m’). The edges between all vertices (m’) in each level k are given as in the d — 1
dimensional torus 7' (m’). The other edges of 7' ((m’,n)) are going from level k to level
k+1fork=1,...,n, where the level n + 1 is identified with the level 1. (We also identify
level O with the level n.) The rule for the edges between the level k and the level k + 1 is
independent of k. Thus the vertices (i’, k) and (j', k + 1) in V,, are adjacent if and only if
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i’ =j'. The adjacency matrix between the two vertices i’ in the level k and j' in the level
k + 1 is given by the 0 — 1 matrix A(m’) := (ayj )y jem), Which is an identity matrix of
order N = vol(m'). For any square matrix A € R"*" we denote by tr A and p(A) the trace
and the spectral radius of A respectively.

Let us recall first the computation of the monomer-dimer entropy %, given in [11]. The
entries of the transfer matrix B(m') = (bsr)s,rcm) are indexed by two subsets of S, T
of (m’). (These subsets may be empty.) First bgr =0 if SN T # . Second assume that
SNT =0 then bgr counts the number of the monomer-dimer covers of the subgraph of
T (m’) induced by the set vertices (m’)\(S U T'). Note that any subgraph of 7'(m’) induced
by a set U C (m’) can be covered by monomers. Hence bsy > 1. If SU T = (m) then
bsr = 1.) It is not hard to see that the product of n terms bg,s,bs,s; ... bs, s,bs,s, corre-
sponds to all monomer-dimer covers of G, = T ((m’, n)) with the following conditions. For
each level k = 1,...,n the dimers going from the level k to k — 1 are located at the set
Sk and the dimers going from the level k to the level k + 1 are located at the set ;. Let
(G, = Zfio ¢ (I, G,) number of all possible monomer-dimer covering 7 ((m’, n)). Then
tr Bm')" = ®(G,). Itis shown in [11]

log® (G, I B(m’ 1 B(m'
i 102G _logp(BaW) L logp(BOW)
n—oo  #V, vol(m’) m—oco  vol(m’)
log p(B(2m')) -1
< P8PV for any m’' € NY7!,
vol(2m’)
(Here 2m’ := (2my, ...,2my_1).) The lower bounds for &, are also expressed in terms of

linear combinations of certain log p(B(m’)) corresponding to different values of m'.

Let T((m'’, Z)) be an infinite graph given by the set of vertices (m’) x Z and the follow-
ing set of edges E(m’, Z). (i, p), (', q)) € E(m’, Z) if either p = ¢ and (i,j) € E(m’)
or |p —¢q|=1andi =j'. Thus the sequence of graphs G, := T ((m’, n)),n =3,4,... con-
verges to G := T ((m', Z)). Let hg(p) := hg,,(p) be defined by (2.1-2.2). We now show
how to compute 4 (p) using the pressure function.

Let S, T be two disjoint subsets of (m'). Let E' C E(m’) be an [-matching of 7' (m")
so that each edge (u, v) € E’ represents a dimer occupying two adjacent vertices in 7 (m’)
located in (m')\(S U T'). To this matching we correspond a monomial x'. Let cg7 (x) be the
sum of all such monomials. cg7(x) is the matching polynomial for the graph 7'(m/, S, T),
the subgraph of 7 (m’) induced by the subset of vertices (m')\(S U T). We let csr(x) =0
if S, TCc(m’)and SNT # (. Then bgy = csr(1). Let bgr(t) := CST(eZI)e(#S+#T)t and
B(m, t) := (bsr(t))s,7cm). The arguments in [11] that show that &(G,) =¥ (1, G,) yield
the equality tr B(m, )" = ¥ (e*, G,). The definition (2.3) of pressure P(¢) and the argu-
ments in [11] for the equality (5.1) imply

log p(B(m, 1))

P(t) = P, (1) = vol(m)

eR. (5.2)

(We suppressed the dependence of P(r) on m'.)
The following results are known, e.g. [1, 12], and we bring their proof for completeness.

Theorem 5.1 Let P(t) := Pig,) be defined by (5.2). Then P is a smooth increasing convex
function on R. Furthermore

tlir_n P'(t)=0, tlim P'(t)=1. (5.3)
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Let p(t) :== P'(t),t € R. Then p(t) is an increasing function such that p([—o0, 00]) =
[0, 1]. Furthermore

hi (P (1)) =P(t) —tP'(t) foranyt R, 5.4
and h(g,y(p) is a continuous concave function on [0, 1], which is smooth in (0, 1).

Proof The well known result [23] yields P(¢) is a convex function of ¢. Since m’ is fixed
we let B(t) := B(m', t) and N = vol(m'). As B(¢) is irreducible, and the nonzero entries of
B(t) are increasing function on R, it follows that P (¢) increases. Since p(B(t)) is a simple
root positive of the characteristic polynomial it follows that o (B(¢)) and P(¢) is an analytic
function in some open domain containing R.

N
B(t) = Z ¢''B;, each B; is nonnegative. (5.5)
i=0

By = (bsr,0)s, 7 corresponds to monomer configurations of . I.e. By is a diagonal matrix
with one nonzero entry by o = 1. The matrix By corresponds to the tiling of 7 ((m’, n)) by
dimers. Hence P(t) =log p(B(t)) is not a linear function. The analyticity of P(¢) yields
that P”(¢) may have only finite number of zeros on any closed interval [a, b]. The convexity
of P(t) implies that P” > 0 on R. Hence P” is positive on any [a, b] except a finite number
of points. Thus p(¢) = P’(¢) increases on R and P(¢) is strictly convex on R. Let x = ¢'.
Then the f?(x) := B(logx) is a polynomial in x. Since p(E(O)) = p(By) =1 is a simple
root of the characteristic polynomial of B it follows that p(é(x)) is analytic in some disk
|x| < €, such that | p(B(x))| > 0 in this disk. Hence the branch log p (B(x)), log p(B(0)) =0
is analytic in this disk and has Taylor expansion. The same statement holds for the derivative
of log p(é(x)). Substitute x = ¢’ to deduce that P(¢) = W and its derivative have
convergent series in x = ¢’ for t < —R, for some R >> 1. This implies the first equality
in (5.3).
Observe that

al N
P(l):t+10gp1(\]B(t))7 B(l) ::Ze(i_N)tBlH
i=0

Hence P'(t) =1+ (W)/. The arguments above for the first equality in (5.3) imply that
the second equality in (5.3).
We now show the inequality

P(t) > pt+hs(p) forall p [0, 1]. (5.6)
Letl, € [0,n]NZ, n € N be sequence satisfying (2.2). Then

wB@®)" =y (e*,G,) > e ¢(l,, G,)

logtrB()' _ 2t log¢ (L, Cy)
Nn ~ Nn Nn '

Recall that #V,,, the number of vertices in G,, is Nn. Use the definition of P(¢) and (2.2) to
deduce

1 I, Gy
P(t) > pt +limsup M.
n—o0 #Vn
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Use the definition (2.1-2.2) of hg(p) := h,;(p) to deduce the inequality (5.6). It is
straightforward to show that & (p) upper semicontinuous on [0, 1].
We now show that for each ¢ € R there exists p(¢) € [0, 1] such that:

P(t) < p(O)t + he(p(@)). (5.7
Let1,(¢) € [0, 2X] N Z satisfy
o, G, <" Dp(1,(t),G,), forl=0,... {%J
Hence
2t nN 20, (1)t
p(e”,Gp) < —e " (1,(1), G- (5.8)

1 2 G,

logye” Gm) _ P(r). Choose a subse-
ngN

Lj ()

quence ji, k € N of ny, k € N, such that limy_, o, = p(t) € [0, 1]. Take the logarithm of
the inequality (5.8) and divide by nN. Let n = ji; and let k — oo. The definition (2.1-2.2)
of hg(p) yields the inequality (5.7).

The inequalities (5.6) and (5.7) yield the equality P(t) = p(t)t + hg(p(t)). Moreover
(5.6) yields P(y) lies above the line p(¢)y + hg(p(¢), which intersect P(y) at the point
y =t.Hence p(t) = P'(t) and hg(p(t)) = P(¢t) — p(t)t. Le. (5.4) holds. Since P’ increas-
ing and analytic the implicit function theorem yields that t = Q(p) is analytic in p € (0, 1).
Hence hg(p) is analytic on (0, 1). Observe that —hg(p) is the Legendre function corre-
sponding to a smooth strictly convex function P(¢) [31]. Hence h¢(p) is concave on (0, 1).
Our arguments yield that 4 (p) is continuous on [0, 1]. Hence /¢ (p) is a concave function
on [0, 1]. O

Take a subsequence ny, k € N such that lim;_,

Remark 5.2 Let hg(p) := hyg,)(p) and P(t) := P(g,)(t) be given as in Definition 2.1. The-
orem 5.1 applies to i (p) and P(t) in the following cases:

1. There exists a nonnegative irreducible matrix B(¢) of the form (5.5) such that

o #V, =nN,n e N.

o Y(e¥,G,)=trB(t)",n eN.

e p(By) =1 and p(By) are positive simple roots the characteristic polynomials of By
and By respectively.

2. G, is a disjoint union of n copies of a finite graph H = (W, F) which has a perfect

2]
matching. Then P (1) = W.

6 A Construction of Sequences of Graphs

We now generalize the construction in the previous section to a general construction of a
sequence of regular graphs. Let F' = (U, D) be an undirected graph with the set of ver-
tices U and the set of edges D. For n > 2 let G, := (V,, E,) be the following graph.
V, = U x (n), i.e. we can view V, consisting of n copies of U arranged in the n layers
, ,U,2),...,(U,n). Welet (U,0):=U,n),(U,n+1):= (U, 1). Then
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1.
. Any other edges of E, are between the vertices (U, k) and (U,k+ 1) fork=1,...,n.
. Let A = (ay)u.vev be a given nonzero 0 — 1 matrix. Then for each k € (n) ((u, k),

Forany u,v e U and k € (n) ((u, k), (v,k)) € E, < (u,v) € D.

(v,k+1)) € E, < a,, =1. We call A the connection matrix.

. For any two subsets S, T C U, (S, T may be empty), let asy € Z,. be defined as follows.

If #S £ #T then asr = 0. Assume that #S = #T'. Let B(S, T) be the set of all bijections
B:S— T.Then dgg =1 and asr = 2568(51) [Tics @spes) for #S =#T > 1.

Thus agr is the number of perfect matchings in the subgraph of the bipartite graph on
the set of vertices (U, 1) U (U, 2), and the set edges E C (U, 1) x (U, 2) given by A, and
induced by the subset of vertices (S, 1) U (T, 2). Let A := (dsr)s.rcu be a 2#U x 2#U
matrix with nonnegative integer entries.

. For any two disjoint subsets S, T C U, let cg7(x) be the matching generating polynomial

of the subgraph of F induced by the set of vertices U\ (S U T). For non-disjoint sub-
set S, T C U let csp(x) =0. Let M(r) := (csr(e2)e™S )¢ 1, and B(t) := M(1)A
be 2%V x 2*U nonnegative matrices for any ¢ € R. Then log p (B(t)) is a continuous con-
vex function on R. If B(1) is an irreducible matrix then log o (B(#)) is an analytic func-
tion on R. (See arguments of the proof of Theorem 5.2.)

Then the sequence G, n =2, ... has the following properties:

e If F' is connected then each G, is connected.
e Assume that F is bipartite, where U = U; U U,, D C U, x U,. Suppose that the edges

between the two consecutive levels of vertices (U, k) and (U, k + 1) are either between
(Ui, k) and (U;,k + 1) for i = 1,2 or between (U;, k) and (U1, k + 1) fori =1,2.
(Us :=U,.) If nis even then G, is bipartite.

Assume that F' is p-regular. Assume that the matrix A has ¢ 1’s in each row and column.
Then G, is p + 2q-regular graph.

Assume that F is p-regular bipartite. Let U = U; U U,, D C U; x U, and n is even.
Assume that the matrix A has the following properties. Each row indexed by u € U; and
each column indexed by v € U, has ¢ 1’s, and each row indexed by v € U, and each
column indexed by u € Uy has ¢ — 1 1’s. (¢ € N.) Then G, is p + 2qg — 1 regular.

Then sequence of graphs G,,n = 2,3, ... converges to the infinite graph G = (V, E),
where V = F x Z. The edges E are either between the two vertices on the same level
(U, k), k € Z, determined by D, or between the vertices of two consecutive levels (U, k)
and (U, k + 1), given by the incidence matrix A in the way described above.

P(t) = w is the pressure of G. Assume that B(1) is an irreducible matrix. Let
hg(p) be defined by (2.1-2.2). Then (5.4) holds. (See Remark 5.2.)

In the example of G, = T ((m’,n)),n = 3,4, ..., discussed in the previous section, we

have that U = T (m’) and A is the identity matrix /. Hence A is also the identity matrix.

7 The Upper Matching Conjecture

For r > 2 let K, be a complete bipartite graph on 2r vertices, where each vertex has de-
gree r. Then

2
¢(1,K,,,>=(;) I, leZ,, and

r 2
Vix, K,.,) = Z (;) Ix!

=0

(7.1)
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Conjecture 7.1 (The upper matching conjecture) Let G = (V, E) be a finite bipartite reg-
ular r-regular graph on 2qr vertices where 2 < q,r € N. Let g K,., be the graph consisting
of q copies of K, ,. Then ¢ (I, G) <¢(,qK,,) for| =0, ...,qr.

In [13] we proved the above conjecture for » = 2. We also showed that for r = 2
¢,G) <¢(l,qK,,) for any 2 regular graph G on 4¢q vertices. (G does not have to be
bipartite.) It is plausible that in the above conjecture one can drop the assumption that G is
bipartite. For [ = 0, 1 the above conjecture is trivial. For / = gr the above conjecture follows
from the Minc conjecture proved by Bregman [3].

Let K (r) be an infinite countable union of K, ,. Let ik (p) be defined as in (2.1-2.2)
where G, =nK,,,n € N. Let G, = (V,, E,),n € N be a sequence of r regular bipartite
graphs, where #V,, — oo. Let h(g,,(p) be defined as in (2.1-2.2). Assume for simplicity
of the exposition that #V,, = 2q,,r. Then Conjecture 7.1 yields ¢ (I, G,) < ¢, g, K, ,) for
n € N. Hence the UMC yields the AUMC: hg(p) < hg((p) forany p € [0, 1].

We use the pressure Pk (f), as pointed in Remark 5.2, to compute kg ) (p). Clearly the
matching generating polynomial of ¢ K, , is ¥ (x, K,.,)7. Hence

log Y7 (1) 11e™

Pgny(t) = »

, teR. (7.2)

This formula follows also from the results of the previous section, where F = K., and
the inciglence matrix A between two levels (U, 1) and (U, 2) is the zero matrix. Then
p(B(1)A) = Y (e¥, K,.,). (5.4) yields

r r2 r 2
N i _ 130 () ene”
2r 2r Y0, (;)Zl!ezzz
Y ()1@ne
2r Y, () e
Conjecture 7.2 (The upper asymptotic matching conjecture) Let G, = (Vy, E;), k € N be

a sequence of r regular bipartite graphs, where #V; — oo. Let hyg,,(p) be defined as in
(2.1-2.2). Let hg(p) be defined by (7.3). Then h,y(p) < hk(p) for any p € [0, 1].

hge(p@®) = ,  where

p() andr e R. (7.3)

It is plausible to assume that Conjecture 7.2 holds under the assumption that each G, is
an r-regular graph.

Theorem 7.3 Let 2 <r € N and assume that G, = (V,, E,)),n € N is a sequence of
r-regular bipartite graphs such that #V, — 0o. Let hig,,(p), p € [0, 1] be defined by
(2.1-2.2). Then

h{G,,](p) =< min(uppr,l(p)7 uppr,Z(p)) fOi’ all p € [07 1]5 (74)
where
plogr! 1
upp,. ;(p) 1= P §p10gp — (1 = p)log(1l—p), (71.5)
plogr 1
upp, ,(p) := 5 E(p log p + (1 — p)log(1l — p)). (7.6)
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Proof We claim that for any G = (V; U V,, E) € G(2m, r) the following inequality holds

m\ (m)%5
o, G) < (z>(m _l)!(r!)r. (1.7)

Indeed, let U;CV; be a subset of cardinality /. Consider the induced bipartite graph G (U;UV;).
Then G(U; U V,) is also an induced subgraph of the graph G’ = (V| U V,, E’), where the
induced subgraph G'(V;\U; U V,) is the complete bipartite graph on V{\U; U V5. It is
straightforward to see that ¢ (I, G') = (im — )¢ (I, G(U; U V,). The Bregman inequality [3]
yields ¢ (I, G') < (m!)% (r!)%. Since the number of choices of U, is (',") we deduce the
inequality (7.7). Let G, = (V,,, E,) € G2m,,,r),n € N. Let [, € [0, m,,] N Z be a sequence
satisfying (2.2). Take the logarithm of the (7.7) divide by #V,, = 2m,, and let n — o0 to
obtain that (g, (d) < upp,;(p).
Our next inequality is

¢, G) < ('?)r’. (7.8)

Let U; C Vi, #U; = 1. Since each vertex of G has degree r it follows that each vertex in U,
that ¢ (I, G(U; UV})) <r'. As one have () choices of the set U; we obtain (7.8). The above
arguments imply that ¢, (p) < upp,,(p). Hence (7.4) holds. |

Figure 3 gives the plot of ik, upp,.;, upp,, for r = 4. From this graph and the cor-
responding graphs for » = 3,8, which is not plotted here, we see that min(upp, (p),
upp,.;(p)) — hg ) (p) decreases with . Moreover the intersection point of the graphs upp,
and upp, ; moves to the left as r increases.

=4

0.6

0.2-

02z 04 06 08 10

Fig. 3 (Color online) h g (4)-green, uppy, 1-blue, uppy »-orange
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8 Computational Results

We have checked the asymptotic matching conjectures for several families like those de-
scribed in Sect. 6. In each case we choose U to be a cycle C; of length [ for several values
of [ and then varied the connection matrix A. In each case we used the described transfer
matrix method to compute the entropy for several values of p and then compared with the
conjectured bounds. In all cases the conjectures were found to hold.

In order to test the conjectured lower bound for a given choice of U and A we first
constructed the transfer matrix B(¢) for the given graph. Given B(t) we can directly compute
P (t) from the maximum eigenvalue as in (5.2). Next we computed P’(z), using the equality

/ T d
p () =m\ = B@) Jm,

where n7 and 7, are the left and right eigenvectors of B(r), normalized by the condition
n,Tnz = 1. (This is a standard variational formula, e.g. [7].) From these values we now com-
pute hg (p(t)) using (5.4). So for each value of r we get a pair (p(t), hg(p(2))) telling us the
asymptotic pressure hg(p(t)) at the density p(z) = P’(t). To make all computations exact
we chose ¢’ to be rational numbers, which yielded rational values for all matrix entries.

Example 8.1 (r =4) In our first family we let /, the length of the cycle U = C;, vary from 4
to 8. We tested all permutation matrices A, which give every vertex (u, k) in G, one neigh-
bor in the level k — 1 and one in the level k + 1, and give rise to a bipartite G,. We thus have
a family of bipartite 4-regular graphs which includes the standard square lattice tori.

In Fig. 4 we plot the difference between the actual values of the entropies h¢ (p), for all
choices of A, and the lower asymptotic matching conjecture for a given range of densities p.
The highest curve correspond to the normal torus graph, i.e. it is the graph with the maximum

number of matchings of a given size in this family.

0.008¢}
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*
*
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*
0.006 = B
« 0,
* . B4
Y
. s B ] 1]
. HER I | ! il
0.004Ff . » e 1
. w 0 Ii.
. = . [ I |
. 3 | |
. ! - *
. . = B [ ]
* B [} ' i ! H L . .
. 0.00.2' '] l l : H = P . "
* . 1 [ .
* [ ] B g 1 . *
i ' ! i v ! . v "
| ] »
, ] ] . . " - :
™ ]
0.65 0.75 0.8 0.85

Fig. 4 Difference between actual entropy and the lower asymptotic matching conjecture for 4-regular graphs
with U = Cg
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Example 8.2 (r = 3) For our second example we again chose U = C; to be a cycle of
length /. Here we chose A so that if we number the vertices on the cycle 1,...,![ the even
vertices in the level k have an odd vertex as a neighbor in the level k + 1 for k=1, ..., n.
G, is cubic, and for / and n even G, is bipartite. This family includes the torus graphs
obtained from the hexagonal lattice which all have girth at least 6. In this case we let the
length of the cycle vary from 4 to 10 and again the conjecture was found to hold. In Fig. 5
we display the difference between the actual values of the entropies hg(p), for all choices
of A, and the lower asymptotic matching conjecture for a given range of densities p. Here
the values typically stayed closer to the conjecture than for the 4-regular case, which is to
be expected since this graph family has higher girth.

Apart from the above tests, we also tested some more arbitrarily chosen connection ma-
trices giving graphs of degree 6. This was done by U as a cycle and choosing the connection
matrix A, having two 1’s in each row and column. Again the conjectures were found to hold
but here the deviation up from the conjectured lower bound was even smaller. This is again
expected since the conjecture should become more accurate for graphs of higher degree.

9 Infinite Graphs with the Maximal Pressure

In this section we give a partial justification for the computational result in Example 8.1 that
the highest curve correspond to the normal torus graph.

Theorem 9.1 Let F = (U, D) be an undirected graph and consider an infinite graph G =
(V, E) defined as follows. V. = U x Z, i.e. the vertices of G consists layers (U, k), k € Z.
The edges E of G connect two vertices on the level k, j € Z only if |k — j| < 1. The edges
between any two vertices on level k are given by D. The edges between the level k and the
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Fig. 5 Difference between actual entropy and the lower asymptotic matching conjecture for 3-regular graphs
with U = Cqo
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level k 4+ 1 are given by #U x #U permutation matrix Ay = ([l,,w’k)uﬁ)ey for each k € 7.
Thus ((u, k), (v,k+ 1)) € E <= ay,; = 1. Let M(t),t € R and A; be the 2*V x 2#V
nonnegative matrices defined as in Sect. 3. Then the pressure Pg(t) of G is given as

logtr M()A_ MA_11... M(t)A;
PG(t)=limsup ogtr () ._/ () Jj+1 ()

.1

Let G be the infinite graph obtained by letting Ay to be the identity matrix for each k € 7.
Then
log p(M (1))

PGO(I)ZTZPGU) 9.2)

for any t € R and any G of the above form. In particular the monomer-dimer entropy hg
of G, which is equal to P;(0), does not exceed hg, = Pg,(0).

Proof Fix i, jeNandletn =i + j + 1. Define G, = (V,,, E,,) to be the following graph.
V,, consists of n copies of U, labelled as (U, k) for k = —j,...,i. The edges of E, are
induced by the edges of G, except that the edges from the level i are connected to the edges
of the level —j, which is identified with the level i + 1, by the connection matrix A;. The
arguments of Sect. 2 yield that ¥ (e*, G,) =tr M(t)A M(t)A,jH M(t)A Hence Pg
is given by (9.1) [12].

Consider now the case of Gy where A; = I. Then (9.1) yields Pg,(t) = bg‘;}%. (See
for example [9, Sect. 10] for the self-contained details of the arguments on matrices used
here.) From the definition of M (¢) it follows that M(¢) is a nonnegative and symmetric
matrix. Hence p(M (1)) = 1M @)l where || M (¢)|| is the /; operator norm of M (¢). Since Ay
is a permutation it follows that Ay is also a permutation matrix. Hence ||Ak || = 1. Thus

IM(OA_;M@OA_j11... M@OA N < IM@O)H = p(M (1))
= tM@OA M@OA ... M)A <2 p(M(1)) !

log p(M (1))

Pg(1) <
= G (1) < 50

This proves (9.2).

From the definition of monomer-dimer entropy of G [11] it follows that hg = Pg(0).
Hence h¢ < hg,. O
Conjecture 9.2 Let the assumptions of Theorem 9.1 hold. Then for any p € [0, 1] hg(p) <
hG() (p) .
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